Stochastic Weight Selection for Backpropagation Through Time Learning

ثبت نشده
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unbiasing Truncated Backpropagation Through Time

Truncated Backpropagation Through Time (truncated BPTT, [Jae05]) is a widespread method for learning recurrent computational graphs. Truncated BPTT keeps the computational benefits of Backpropagation Through Time (BPTT [Wer90]) while relieving the need for a complete backtrack through the whole data sequence at every step. However, truncation favors short-term dependencies: the gradient estimat...

متن کامل

Unbiasing Truncated Backpropagation through Time

Truncated Backpropagation Through Time (truncated BPTT, Jaeger (2005)) is a widespread method for learning recurrent computational graphs. Truncated BPTT keeps the computational benefits of Backpropagation Through Time (BPTT Werbos (1990)) while relieving the need for a complete backtrack through the whole data sequence at every step. However, truncation favors short-term dependencies: the grad...

متن کامل

An integrated vendor–buyer model with stochastic demand, lot-size dependent lead-time and learning in production

In this article, an imperfect vendor–buyer inventory system with stochastic demand, process quality control and learning in production is investigated. It is assumed that there are learning in production and investment for process quality improvement at the vendor’s end, and lot-size dependent lead-time at the buyer’s end. The lead-time for the first batch and those for the rest of the batches ...

متن کامل

Semi-Supervised Learning with Sparse Autoencoders in Automatic Speech Recognition

This work is aimed at exploring semi-supervised learning techniques to improve the performance of Automatic Speech Recognition systems. Semi-supervised learning takes advantage of unlabeled data in order to improve the quality of the representations extracted from the data. The proposed model is a neural network where the weighs are updated by minimizing the weighted sum of a supervised and an ...

متن کامل

Memory-based control with recurrent neural networks

Partially observed control problems are a challenging aspect of reinforcement learning. We extend two related, model-free algorithms for continuous control – deterministic policy gradient and stochastic value gradient – to solve partially observed domains using recurrent neural networks trained with backpropagation through time. We demonstrate that this approach, coupled with long-short term me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012